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ABSTRACT

Music onset detection plays an essential role in music signal processing and has a wide range of
applications. This chapter provides a step by step introduction to the design of music onset detection
algorithms. The general scheme and commonly-used time-frequency analysis for onset detection are
introduced. Many methods are reviewed, and some typical energy-based, phase-based, pitch-based and
supervised learning methods are described in detail. The commonly used performance measures, onset
annotation software, public database and evaluation methods are introduced. The performance difference
between energy-based and pitch-based method is discussed. The future research directions for music
onset detection are also described.
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INTRODUCTION

The audio signal is often considered to be a succession of the discrete acoustic events. The term music onset
detection refers to detection of the instant when a discrete event begins in a music signal. Music onset
detection plays an essential role in music signal processing and has a wide range of applications such as
automatic music transcription, beat-tracking, tempo identification and music information retrieval.

Different sound sources (instruments) have different types of onsets that are often classified as “soft” or
“hard”. The human perception of the onset is usually related to the salient change in the sound’s pitch,
energy or timbre. Hard onsets are characterized by sudden increases in energy, whereas soft onsets show
more gradual change. Hard onsets can be well detected by energy-based approaches, but the detection of
soft onsets remains a challenging problem. Let us suppose that a note consists of a transient, followed by
a steady-state part, and the onset of the note is at the beginning of the transient. For hard onsets, energy
changes are usually significantly larger in the transients than in the steady-state parts. Conversely, when
considering the case of soft onsets, energy changes in the transients and the steady-state parts are
comparable, and they do not constitute reliable cues for onset detection any more. Consequently, energy-
based approaches fail to correctly detect soft onsets. Stable pitch cues enable to segment a note into a
transient and a steady-state part, because the pitch of the steady-state part often remains stable. This fact
can be used to develop appropriate pitch-based methods that yield better performances, for the detection
of soft onsets, than energy-based methods. However, although many approaches use energy information,
only a few pitch-based methods have been proposed in the literature.

We discuss general scheme for onset detection and how to develop an onset detection algorithm step by
step. Many existing methods are described, and a few typical methods are to be described in detail.
Performance evaluation and future research directions will also be discussed. The organization of this
chapter is listed as follows. The ALGORITHMS section explains the general scheme for music onset
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detection and typical algorithms for energy-based, phase-based, pitch-based and supervised learning
approaches. In the section on PERFORMANCE EVALUATION, the evaluation of onset detection
approaches is discussed, and several established evaluation results are presented. Finally, the section on
FURTHER RESEARCH DIRECTIONS discusses possible research directions, inspired by human
perception, which could be applied to the field of music onset detection.

ALGORITHMS
General Scheme

Many different onset detection systems have been described in the literature. As shown in Fig. 1, they
typically consist of three stages; time-frequency processing, detection function generation, and peak-
picking (Bello et al., 2005). At first, a music signal is transformed into different frequency bands by using
a filter-bank or a spectrogram. For example, the Short Time Fourier Transform (STFT) and the Resonator
Time Frequency Image (RTFI) are two useful time-frequency analysis tools for onset detection. Then, the
output of the first stage is further processed to generate a detection function at a lower sampling rate.
Finally, a peak-picking operation is used to find onset times within the detection function, which is often
derived by inspecting the changes in energy, phase, or pitch.

Time-frequency Detection Function Peak-picking
Processing Production
Energy-based :
| qii{r:j;}?o | STFT, RTFI > Phase-based | Post-processing Detected
e g - 4

Pitch-based Thresholding Onsets
Supervised-learing - -

Figure 1 Three stages of music onset detection: time-frequency processing of the audio signal,
producing an onset detection function, and using peak-picking to identify onsets

Time-frequency processing

Music signals are time-varying, and most of the analysis tasks require a joint time-frequency analysis.
One commonly-used time-frequency analysis tool is Short Time Fourier Transform (STFT). The Fourier
Transform and its inverse can transform signals between the time and frequency domains. It can make it
possible to view the signal characteristics either in time or frequency domain, but not to combine both
domains. In order to obtain a joint time-frequency analysis for non-stationary signals, the STFT cuts the
time signal into different frames and then perform a Fourier Transform in each frame. The STFT can be
defined as follows,

STFTt, w):jjos(r)w—t)e*fmdr (1)

The STFT at time ¢ is the Fourier Transform of a local signal, which is obtained by multiplication of a
signal s(¢) and a short window function w(7 —¢) centered at time ¢. When moving the window along
the signal time axis, we can calculate the STFT at different time instants and obtain a joint time-frequency
analysis. The discrete STFT of a signal s(n) can be defined as follows,

N/2-1
—2 jaml
X, (n)=" 2 s(nh+Dw(l)e ™ @)
I==N/2
where w(l) is a N-point window , % is the hop size and m denotes the different frequency bins.
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Another useful time-frequency representation for music signal analysis is the Resonator Time Frequency
Image (RTFI). To better explain the RTFI, first a frequency-dependent time-frequency (FDTF) analysis is
defined as follows:

FDTF(t,0) = [ s(r)w(z —t,w)e’*dr 3)

Unlike the STFT, the window function w of the FDTF may depend on the analytical frequency . This
means that time and frequency resolutions can be changed according to the analytical frequency. At the
same time, Eq. (3) can also be expressed as convolution:
FDTF (t,®) = s(t) * 1(t, ) 4)
where
I(t,o)=w(-t,m)e’ 5)

Equation (3) is more suitable for expressing a transform-based implementation, whereas Eq.(4) leads to a
straightforward implementation of a filter bank with impulse response functions expressed in Eq. (5). On
the one hand, we can also group the terms in the STFT definition differently to obtain the filter bank
interpretation for STFT. However, there are two main differences between the band-pass filter
implementations of STFT and FDTF.

As illustrated in Fig. 2, one difference is that, in the implementation of the STFT, the bandwidth of the
band-pass filter is kept fixed and independent of its centre frequency w. Instead, for the FDTF, the
bandwidth of the band-pass filter can be changed according to centre frequency ®. Another difference is
that, in the implementation of the STFT, the output of every band-pass filter centered at ® is then
demodulated to zero frequency. Such a demodulation process does not exist in the implementation of the
FDTF.

1
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a) Filter bank implementation of FDTF b) Filter bank implementation of STFT

Figure 2 Filter bank implementation of STFT and FDTF

Computational efficiency and simplicity are the two essential criteria used to select an appropriate filter
bank for implementing the FDTF. The order of the filter bank needs to be as small as possible to reduce
computational cost. The basic idea behind the filter-bank-based implementation of FDTF is to realize
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frequency-dependent frequency resolution by possibly varying the filters’ bandwidths with their center
frequencies. Therefore, the implementing filters must be simple so that their bandwidths can be easily
controlled according to their center frequencies. The RTFI selects a first-order complex resonator filter
bank to implement a frequency-dependent time-frequency analysis.

The RTFI can be expressed as follows:
RTFI (t,w) = s(t) * [ (¢, ) (6)

t .
= r(a))jo s(r)e e ot ¢

where

1, (t,®)=r(w)e 7", t>0 (7)
In these equations, Iz denotes the impulse response of the first-order complex resonator filter with
oscillation frequency w. The factor r(w) before the integral in Eq. (6) is used to normalize the gain of the
frequency response when the resonator filter’s input frequency is the oscillation frequency. The decay
factor r is dependent on the frequency w and determines the exponent window length and the time
resolution. At the same time it also determines the bandwidth (i.e., the frequency resolution). The
frequency resolution of time-frequency analysis implemented by the filter bank is defined as the
equivalent rectangular bandwidth (ERB) of the implementing filter, according to the following equation:

B™ = ["|H(w) do (®)
where H(w) is the frequency response of a band pass filter and the maximum value of |H(w)| is

normalized at 1 (Hartmann, 1997). The ERB value of the digital filter can be expressed according to
angular frequency as follows:

B () = r()(0.57 + arctan( (a)
r(o

©)
)))

In most practical cases, the resonator filter exponent factor is nearly zero, so arctan(w/r(w)) can be
approximated to 0.57, and Eq. (9) is approximated as follows:

B (w) = r(w)- 7 (10)
The resolution B8 can be set through a map function between the frequency and the exponential decay

factor . For example, a frequency-dependent frequency resolution and corresponding r value can be
parameterized as follows:

B (@) =d+cao, d+c>0, ¢>0,d>0 (11)

Hw) = B™ (@) n=(d+cw)/ = (12)

The commonly used frequency resolutions for music analysis are special cases of the parameterized
resolutions in Eq.(11). When d=0, the resolution is constant-Q; when ¢=0, the resolution is uniform;

when d =24.7x27=155.2, ¢=0.1079, the resolution corresponds to the widely-accepted resolution of an
auditory filter bank (Moore & Glasberg, 1996).

As the RTFI has a complex spectrum, it can be expressed as follows:

RTFEI(t,®) = A(t,w)e’”"?” (13)
where A(t,w) and ¢(?, w ) are real functions.
RTFI,,,, (t,0) = |At,o) (14)

It is proposed to use a complex resonator digital filter bank for implementing a discrete RTFI. To reduce
the memory usage of storing the RTFI values, the RTFI is separated into different time frames, and the
average RTFI value is calculated in each time frame. The average RTFI energy spectrum can be
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expressed as follows:
2

) (15)

nM
A(n,,) =20log,, (L > |RTFI(l,®,)
M 1 Ta
where 7 is the index of a frame, M is an integer, and the ratio of M to sampling rate is the duration time
of each frame in the average process. RTFI(I, w.) represents the value of the discrete RTFI at sampling
point / and frequency w,. A detailed description of the discrete RTFI can be found in the references
(Zhou, 2006; Zhou & Mattavelli, 2007).

Energy-based detection

In early methods, the amplitude envelope of a music signal was used to derive the detection function. The
amplitude envelope can be constructed by rectifying and smoothing the signal:

N/2-1

C(n)y= > |s(n+k)|w(k) (16)

k=-N/2

where w(k) is N-point window. A variation on this is to derive the detection function from local energy,
instead of amplitude.

N/2-1

E(n)= Y s*(n+kyw(k) (17)

k=—N/2

In the simplest case, differences in a signal’s amplitude or energy are used to detect note onsets. However,
such an approach has been shown to give poor results. Researchers have found it useful to separate the
analyzed signal into a number of bands and then detect onsets across the different frequency bands. This
constitutes the key element of multi-band processing. For example, Goto utilizes the sudden energy
changes to detect onsets in seven different frequency ranges and uses these onsets to track the music beats
by a multiagent architecture (Goto, 2001). Klapuri divides the signal into 21 frequency bands by the
nearly critical-band filter bank (Klapuri, 1999). Then, he uses amplitude envelopes to find onsets across
these frequency bands. Duxbury et al. introduce a hybrid multiband processing approach for onset
detection (Duxbury, Sandler and Davies, 2002). In the approach, an energy-based detector is used to
detect hard onsets in the upper bands, whereas a frequency based distance measure is utilized in the lower
bands to improve the detection of soft onsets. Wang et al. proposes a novel approach based on music
spectra magnitude (Wang et al., 2008). They first decompose the music spectra magnitude into linear
temporal bases by nonnegative matrix factorization, and then use the linear temporal bases to construct
detection functions.

The spectrum is used to measure the energy change in the time-frequency domain. The first-order
difference of energy has been utilized to evaluate the energy change and derive a detection function.
However, the first-order difference is usually not able to precisely mark onset times. According to
psychoacoustic principles, a perceived increase in the signal amplitude is relative to its level. The same
amount of increase can be perceived more clearly in a quiet signal (Klapuri, 1999). Consequently, as a
refinement, the relative difference can be used to better locate onset times.

For example, when the STFT is selected as the time-frequency processing tool, the spectrum D can be
defined as follows,

2 2
D, (n)=20log, (| X, (n)])—20log,, (X, (n-D|") (18)
where X ,,(n) is the discrete STFT of the input signal.
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The commonly-used energy-based detection methods can be generalized as follows,

M(n) =23 H(D, (n) (19)
N

m=1
where H(x)=(x+ ‘x‘)/ 2 is the half-wave rectifier function, N is the total number of frequency bins in

the spectrum D, and M is the detection function. The detection function is further smoothed by a moving
average filter and a simple peak-picking operation is used to find the note onsets. In the peak-picking
operation, only those peaks having values greater than a threshold 6 are considered as the onset
candidates.

In this paragraph, it is explained that why time-frequency decomposition can greatly improve the energy-
based detection methods, and why the positive flux is necessary. In many cases, during the note transition
time, the current note may decay and decrease energy, while the new note may begin and increase in
energy, and the change in total energy is not noticeable. If the two successive notes have different pitch,
then the energy-increasing and energy-decreasing will occur in the different frequency channels after an
appropriate time-frequency decomposition. As only the energy-increasing is the useful cue for onset time,
energy-decreasing during the decay of the former note should be ruled out. When summing energy
change across all frequency channels to derive a detection function, the type of flux is limited to the
positive flux. Accordingly, only the energy increase during the onset time of the latter note is considered.

Phase-based detection

As opposed to the standard energy-based detection, phase-based detection makes use of the spectral phase
information as its source of information. The STFT can also be considered as complex band-bass filter
banks with equal bandwidth, and the STFT coefficient X ,,(n) denotes the output of the m" filter. In cases
where there is only one sinusoid component passing the m” band-pass filter and at the same time this
sinusoid component is stable, the output of the m” filter must have a nearly constant frequency.
Therefore, the difference between two consecutive unwrapped phase values of X ,,(n) must remain nearly
constant:

@, (M) =@, (n-) =@, (n-1)-¢,(n-2) (20)
where ¢,(n) is defined as the 2m-upwrapped phase of the STFT coefficient X ,,(n). The phase deviation
Apu(n) can also be defined as:

Ap,(n) =9, (n)=2¢,(n-D+¢,(n-2)=0 (21)
During the steady-state portion of the signal, Ag,(n) is nearly equal to zero. During the transient portion,
the frequency of X ,,(n) is not constant, and Ag,.(n) tends to be large. The analysis can be extended to the
distribution of phase deviations of all frequency bins of the STFT (Bello & Sandler, 2003). During the
steady-state part of the signal, the distribution is pointed. In the transient part, the corresponding

distribution is flat and wide. These observations can be quantified by calculating the inter quartile range
and the kurtosis coefficient of the distribution.

Phase-based onset detection has demonstrated better performance in the detection of the soft onset than
standard energy-based methods. However, it is susceptible to phase distortion and to phase noise
introduced by the phases of low energy components.

Pitch-based detection

The approaches that use only energy and/or phase information are not satisfactory for the detection of soft
onsets. Pitch-based detection appears as a promising solution for the problem. Pitch-based approaches can
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use stable pitch cues to segment the analyzed signal into transients and steady-state parts, and then locate
onsets only in the transients. A pitch-based onset detection system is described in the reference (Collins,
1999). In the system, an independent constant-Q pitch detector provides pitch tracks that are used to find
likely transitions between notes. For the detection of soft onsets, such a system performs better than other
state-of-the-art approaches. However, it is designed only for onset detection in monophonic music. As
polyphonic pitch estimation remains a largely unsolved problem, this makes it difficult to construct a
pitch-based onset detection for polyphonic music. This subsection describes a pitch-based approach that
detects onsets in real polyphonic music (Zhou, Mattavelli and Zoia, 2008).

The monaural music signal is used as the input signal at a sampling rate of 44.1 kHz. The system applies
the RTFI as the time-frequency analysis. The center frequencies of the discrete RTFI are set according to
a logarithmic scale. The resolution parameters in Eq. (11) are set as d=0 and ¢=0.0058. The frequency
resolution is constant-Q and equal to 0.1 semitones. Ten filters are used to cover the frequency band of
one semitone. A total of 960 filters are necessary to cover the analyzed frequency range that extends
from 26 Hz to 6.6 kHz. The RTFI energy spectrum is averaged to produce the RTFI average energy
spectrum in units of 10ms.

It is well known that the human auditory system reacts with different sensitivities in the different
frequency bands. This fact is often described by tracing equal-loudness contours. Jensen suggests a
detection function called the perceptual spectral flux (Jensen & Andersen, 2004), in which he weighs the
difference frequency bands by the equal-loudness contours. Collins uses the equal-loudness contours to
weight the different ERB scale bands and derive another detection function (Collins, 2005a). Considering
these works, in the method described here, the average RTFI energy spectrum is transformed following
the Robinson and Dadson equal-loudness contours, which have been standardized in the international
standard ISO-226. To simplify the transformation, only an equal-loudness contour corresponding to 70
dB is used to adjust the average RTFI energy spectrum. The standard provides equal-loudness contours
limited to 29 frequency bins. Then, this contour is used to get the equal-loudness contours of 960
frequency bins by cubic spline interpolation in the logarithmic frequency scale. Let us identify this equal-
loudness contour as Eg(w,) in dB. Then, the spectrum Y can be calculated as follows:

Y(k,0,)= Ak, 0,)-Eq(o,) (22)
where w,, represents the angular frequency of the m” frequency bin. A(k, w.) denotes the average RTFI
energy spectrum that is defined in Eq. (15) .

The music signal is structured according to notes. It is interesting to observe that an energy spectrum is
organized according to note pitches rather than to a single frequency component. Then, the spectrum Y is
further recombined to yield the spectrum R according to a simple harmonic grouping principle:

R(k0,)= £ V(ki-o,) 23)

In practical cases, instead of using Eq. (23), the spectrum R can be easily calculated on the logarithmic
scale by the following approximation:

1 5
Rk,,) ~ 22 Y (., ) (24)

i=1
A[5]=[0,120,190,240,279] (25)

In Eq. (24) and (25), @, = 27 -26 -2"'* ,mis from 1 to 680 and the corresponding pitch range is

26Hz to 1.32kHz. To reduce noise, a 5x5 mean filter is used for the low-pass filtering of the spectrum R
according to the expression:
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2 2
S(k,a)m):%z S Rk+i0,,,) (26)
i==2 j=-2

th

To show energy changes more clearly, the spectrum D is calculated by the n”-order difference of

spectrum S.

D(k,w,)=Sk,»,)-Sk-n,0,) (27)
where the difference order 7 is set as 3 in a heuristic way.
F(k,0,)=Sk,0,)—max((S(k,®,)),_.v) (28)

where N is the total number of frequency bins, and spectrum F is the relative measure of the maximum of
S.

Finally the spectra D and F together are considered as the input for the second stage of the onset detection
algorithms.

The energy-based detection algorithm does not perform well for detecting soft onsets. Consequently, a
pitch-based algorithm has been developed to improve detection accuracy of soft onsets. A music signal
can be separated into transients and steady-state parts. The basic idea behind the algorithm is to find the
steady-state parts by using stable pitch cues and then look backward to locate onset times in the transients
by inspecting energy changes.

In most cases, a note has a spectral structure where dominant frequency components are approximately
equally spaced. The energy of a note is mainly distributed in the first several harmonic components. Let
us suppose that all the energy of a note is distributed in the first 10 harmonic components. For a
monophonic note with fundamental frequency w, usually its spectrum Y (Eq.22) can have peaks P(w, A1),
PQw, A;) ... P(10w, Ajy) at the harmonic frequencies. P(w, 4) denotes the spectral peak that has value 4
at frequency w. In most cases, the corresponding spectrum R (Eq. 23) presents the strongest spectral peak
P(w, (A1+ Ax+ As+ A4+ As)/5) at the fundamental frequency of the note. Accordingly, the fundamental
frequency of a monophonic note can be estimated by searching for the maximum peak in the note’s
spectrum R. For a polyphonic note, the predominant pitches can be estimated by searching the spectral
peaks that have values approaching or equal to the maximum in spectrum R. These peaks are near the
fundamental frequencies of the note’s predominant pitches; hence, the peaks are named “predominant
peaks”. The spectrum F' (Eq. 28) is the relative measure of the maximum of R. Consequently, in F, the
predominant peaks have values approximately equal to 0 dB. To know how a pitch changes in a music
signal, F' can be calculated in each short time frame in units of 10ms to get a two-dimensional time-
frequency spectrum. Given the time-frequency spectrum F of a signal, if there is always a predominant
peak around a frequency w.; in every time frame of a time span, this means that there is a stable pitch in
the time span, and it can be assumed that the time span corresponds to a steady-state part. The time span
can be called “steady time span”. The images of the time-frequency spectrum are very useful to validate
algorithm development by visual inspection. Several different music signals and their spectra have been
analyzed during the experimental work. It can be commonly observed that, during the steady-state part of
a note, there are always one or more steady time spans, which are located just after the note’s onset.
Consequently, the steady-state parts of a signal can be found by searching steady time spans in the
signal’s spectrum F.

The pitch—based algorithm described here consists of two steps:
1) Searching possible note onsets in every frequency channel.
2) Combining the detected onset candidates across all the frequency channels.

In the first step, the algorithm searches for possible pitch onsets in every frequency channel. When
searching in a certain frequency channel with frequency w,.,, the detection algorithm tries to find only the
onset where the newly occurring pitch rightly has an approximate fundamental frequency w,,;. In each
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frequency channel with frequency w.;, the algorithm searches the steady time spans, each of which
corresponds to the steady-state part of a note having a predominant pitch with fundamental frequency
wm. Given a time-frequency spectrum F'(k, w,), a time span T [kI, k2] (in units of 10ms) is considered
to be steady if it meets the following three conditions:

(F(k7 a)m))m:ml,k:lrl:kZ > al (29)
maX((F(k’ a)m))m:ml,k:kl:kz) > aZ (30)

where a; and oy are two thresholds.
The third condition is that Sum(w.) has a spectral peak at the frequency wmi,

kZ
Sum (@,) =Y F(k,®,) (31
k=k,
The boundary (kI and £2) of a time span can be easily determined as follows. F; (k) is the time-frequency
spectrum £ in the frequency channel with frequency ;.

F;(k) = (F(k’wm))m:ml (32)
Then, a two-value function P(k) is defined as:
P(k) = {1’ E@=ze, (33)
0, FEh<a
G(k) = P(k) - P(k - 1) (34)

where G(k) is the first-order difference of P(k). The beginning of a time span corresponds to the time at
which G(k) assumes the value 1 and the end of the time span is the first instant, when G(k) assumes the
value -1.

After all the steady time spans have been determined, the algorithm looks backward to locate onsets from
the beginning of each steady time span using the spectrum D (Eq. 27). For a steady time span T /[kI,
k2], the detection algorithm locates the onset time by searching for most noticeable energy-change peak
larger than the threshold a3 in spectrum (D(k, @m))m=m1, k=ki-300:k1. The search is done backward from the
beginning of a steady time span, and the searching range is limited inside the 0.3-s window before the
steady time span. The time position of this energy-change peak of the spectrum D is considered as a
candidate pitch onset.

After all frequency channels have been searched, the pitch onset candidates are found and can be
expressed as follows:
Onset_C(k,0,)20,m=1, 2, 3, ...N, (35)

where £ is the index of time frame and N is the total number of the frequency channels.

If Onset C(k, w.,)=0, no onset exists in the k" time frame of the m™ frequency channel. If Onset C(k,
®n)>0, there is an onset candidate in the k" time frame of the m™ frequency channel, and the value of
Onset_C(k, wy) is set to the value of D(k, wn).

In the second step, the detection algorithm combines the pitch onset candidates across all the frequency
channels to generate the detection function as follows,

N

DF (k) = % > Onset_C(k,,) (36)
m=1

The detection function is low-pass filtered by a moving average filter. Then, a peak-picking operation is

used to find the onset times. If two onset candidates are neighbors in a 0.05-s time window, then only the

onset candidate with the larger value is kept.

A bow violin excerpt is provided to exemplify the specific usage and advantage of the pitch-based
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algorithm. The example is a slow-attacking violin sound. Very strong vibrations can be observed from its
spectrum Y reported in Fig. 3. Because of the vibrations, noticeable energy changes also exist in the
steady-state parts of the signal. Therefore, the energy changes are not reliable for onset detection in this
case. In the energy-based detection function, it is seen that there are many spurious peaks that are, in fact,
not related to the true note onsets. Consequently, the energy-based detection algorithm shows very poor
performance in this example.

Adjusted Energy Spectrum for Bow Violin Example
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Figure 3 Bow Violin example: adjusted energy spectrum (spectrum Y).
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Normal Pitch Energy Spectrum for Bow Violin Example
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Figure 4 Bow Violin example: normal pitch energy spectrum (spectrum F).

The vertical lines in the image denote the positions of the true onsets.
The Figure is adapted from (Zhou, Mattavelli and Zoia, 2008)

Spectrum F in the Frequency Channel 294 Hz
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Figure 5 Bow Violin example: search of steady time spans in one frequency channel.
The Figure is adapted from (Zhou, Mattavelli and Zoia, 2008)
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Spectrum D in Frequency Channel 294Hz
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Figure 6 Bow Violin example: location of the onset position backward from steady time span.
The Figure is adapted from (Zhou, Mattavelli and Zoia, 2008)



Submitted for;

Ruohua Zhou and Joshua D. Reiss, ‘Music Onset Detection,” Chapter 12 in Machine Audition: Principles,
Algorithms and Systems, Edited by W. Wang, Published by IGI Global, ISBN-13: 978-1615209194, July,
2010, p. 297-316, doi: 10.4018/978-1-61520-919-4.ch012

Onset Candidates in Different Frequency Channels for Bow Violin Example
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Figure 7 Bow Violin example: onset candidates in all the frequency channels.
The dots denote the detected onset candidates, the vertical lines are true onsets.

Fig. 4 illustrates the spectrum F of the example, and the vertical lines in the image denote the positions of
the true onsets. It can be clearly observed that there is always at least one steady time span (white spectral
line) just behind an onset position. The algorithm searches every frequency channel to find steady time
spans, each of which is assumed to correspond to a steady-state part.

For example, steady time spans are searched in frequency channel 294 Hz. As shown in Fig. 5, in the
spectrum F of this frequency channel, there is a time span T /244, 320] (in units of 10 ms). T has values
larger than the threshold a,=-10dB, and presents its maximum up to O dB. There is also a peak rightly at

a frequency of 294Hz in the Sum’ (w,,), which is obtained by the following expression:
320

Sum " (w,)= Y Fv(k,0,) (37)
k=244

Fv(k, wn) is the time-frequency spectrum F of the bow violin example. T is considered to be a steady time
span because it meets the three conditions, which were introduced earlier and used to judge if the time
span is steady. Then, the detection algorithm locates the onset position by searching for a noticeable
energy change peak larger than the threshold as (in this example, 03=2) in the spectrum D of the
frequency channel. The searching window is limited inside the 0.3-s window before the steady time span
T. As shown in Fig. 6, in the spectrum D of the frequency channel 294Hz, a peak with a value larger than
the threshold a3 is positioned near 2.42 s. The time position is considered as a candidate onset time.

Here the pitch-based algorithm uses stable pitch cues to separate the signal into the transients and the
steady-state parts, and searches the onset candidates by energy changes only in the transients. So the
energy changes caused by the vibrations in steady-steady parts are not considered as detection cues. The
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dots in Fig. 7 denote the detected onset candidates in the different frequency channels by the pitch-based
detection algorithm. It can be observed that the onset candidates are nearly around the true onset
positions. Finally the detection algorithm combines the pitch onset candidates across all the frequency
channels to get the final result.

Supervised learning

Some approaches to onset detection are not compatible with the typical procedure described earlier, and
they are based on machine learning (Marolt, et al., 1999; Chuan & Elaine, 2008; Davy & Godsill, 2002).
Generally speaking, these methods first perform a time-frequency analysis, such as STFT or constant-Q
analysis for the music signal. Then, corresponding energy and phase information is used to classify every
frame as being onset or non-onset by supervised learning algorithms.

A typical supervised learning method is described as follows (Lacoste & Eck, 2007).

Audio B Spectrogram P Feed-forward > Peak - Detected

\ Signal Meural Network picking Onsets

Figure 8 A music onset detection method based on supervised learning

As shown in Fig. 8, the method first performs a STFT analysis to produce a spectrogram, which is then
used as the input variables to a feed-forward neural network (FNN). The FNN is trained to evaluate how
much every spectrogram frame can be classified as being onset. The outputs of the network are then
treated with a simple peak-picking algorithm based on a moving average. The FNN has two hidden layers
and a single neuron in the output layer. The tanh activation function is used for hidden layers, and the
logistic sigmoid activation function is selected for the output layer. The conjugate gradient descent is
employed as learning function.

Although every spectrogram frame could also be classified as a simple 0 or 1 (onset/nononset), it is more
reasonable to use smooth changes to model the transition between onset and nononset. Accordingly, the
target trace for every frame can be a combination of the peaked Gaussians, which is centred on the
labelled onset time.

7= Y e - 5 (38)

Where T'(t) represents the target trace value of the spectrogram frame at the time position of ¢, 7; is the i”"
labelled onset time and o is the width of the peak, chosen to be 10 milliseconds. In the training phase, the
network produces a predicted value for every time step. As shown in the following equation, the error
function is the sum of the squared error over all input patterns.

E=Y (T(t)-0(,)’ (39)

where O(t)) represents the output of the neural network for pattern .

The goal of the neural network is to predict an onset trace at the time of every time step. The input
variables to the neural network are selected from the spectrogram of the input signal. The number of input
variables should be as small as possible, because the large size of input variables makes it very difficult to
train the neural network. Accordingly, when predicting an onset trace for a certain frame, it is reasonable
that only the spectrogram points near the frame are selected as the input variables. In the method, the
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input variables are some spectrogram points within a time-frequency window centred on the predicted
frame. To reduce the number of input variables, the spectrum points in the input window are randomly
sampled both on the time and frequency axis. Uniform sampling is used along frequency axis, and the
values along the time axis are sampled according to a normal distribution. More than 200 input variables
are sufficient to yield a good result.

The input window has a width of 200 milliseconds. The window height is 90% of the height of the
spectrogram. Thus, when moving the input window across the frequency axis, there are multiple similar
input windows for the same time step and this will yield a more robust model. Accordingly, the network
has multiple predicted values for a single frame, and the multiple values are merged to generate a
detection function

Finally, a simple peak picking algorithm is used to find onset times from the detection function. The peak
picking algorithm can be expressed as follows.

p(t) = d(t) —u(t) (40)
where

u(t) =g *d(t) (41)
where g is the Gaussian filter, d denotes the detection function, and p is the peak trace.

In the peak picking algorithm, a high-pass filter is used to isolate the interesting fast change information
from the slow change, which is considered to be not related to onsets. The high pass filter is implemented
by subtracting the Gaussian-filtered signal from the original signal. In the final step, in the peak trace p,
each peak with a value larger than threshold K is considered to represent an onset time. The position of
the onset is calculated as the centre of mass of all points inside the peak. The optimal threshold K can be
selected from training samples.

PERFORMANCE EVALUATION
Performance Measures

To evaluate the detection method, the detected onset times must be compared with the reference ones. For
a given reference onset at time ¢, if there is a detection within a tolerance time-window [t-50ms, t+50ms],
it is considered to be a correct detection (CD). If not, there is a false negative (FN). The detections outside
all the tolerance windows are counted as false positives (FP). The F-measure, Recall and Precision
measures are used to summarize the results. The Precision and Recall can be expressed as:
— NCD
NCD + NFP
— NCD
NCD + NFN

(42)

(43)

where N¢p is the number of correct detections, Npp is the number of false positives and Ngy is the
number of false negatives. These two measures can be summarized by the F-measure defined as:
e 2PR

= 44
P+R e

Onset Annotation

It is important to construct a reference database with reliable annotated onset times. Onset detection is a
subjective task, usually there is no perfect reference for onset times. In most cases, the onset times need to
be hand labeled. For percussive onsets, the reference times can be precisely labeled by visualizing the
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waveform in audio display software. In the spectrogram of the analyzed signal, the concurrent fast
energy-increasing of different harmonic components of a music note can be often visualized at the onset
time. Accordingly, the spectrogram is also a very useful tool to help annotate the onset times, although it
is not very precise. The most precise and flexible method for onset annotation is to listen to signal slice
with the support of visualizations.

The Sound Onset Labelizer (SOL) is a free onset annotation software for research purpose (Leveau,
Daudet and Richard, 2004). This software provides a user-friendly interface to annotators. Both the
waveform and the spectrogram of the analyzed signal can be seen in the screen of the software’s GUI.
The spectrogram and waveform parts have the same time axis. Using the tool, onset labels can be first
annotated in the spectrogram by visual inspection, and then they can be more precisely adjusted by aural
feedbacks. More reliable reference onset times can be achieved by cross-validation among the different
expert annotators.

As onset annotation is a very time consuming task, it is more efficient to share some public database
among different researchers. Leveau et al. provide a reliable public distributed database for onset detection,
which contains 17 short music sequences in different music instruments and genres (Leveau, Daudet and
Richard, 2004). The validated onset labels for more than 700 corresponding onsets are also freely distributed.

Performance Comparison and MIREX Evaluation

It is quite difficult to make performance comparison among the different methods for onset detection,
because there is a shortage of public database available, and different researchers use different test
databases. There is a direct comparison between an energy-based method and a pitch-based one in the
literature (Zhou, Mattavelli and Zoia, 2008). Both methods are based on the RTFI time-frequency
analysis. The pitch-based method has been described in the above section. The same test dataset was used
for the evaluation. The test database contains 30 music sequences of different genres and instruments. In
total there are 2543 onsets and more than 15-minutes of time duration. The music files are classified into
the following classes: piano, plucked string, sustained string, brass, winds, complex mixes. Here the piano
is considered as a single class because most of the piano music contains many hard onsets.

The total test results on the test dataset are summarized in Table I. The energy-based algorithm performs
better than does the pitch-based algorithm on the piano and complex music, which contains several hard
onsets. The energy-based detection gains 5.0% for piano music and 8.4 % for the complex music.
Conversely, the pitch-based detection algorithm performs better in the brass, winds and sustained string,
in which note onsets are considered to be softer. For the sustained string, the pitch-based algorithm gains

Table 1 Comparison between the energy-based and pitch-based methods

Plucked Strin, . ] Sustained Strin;
Piano Complex Mixes (Guitar, Violir%, Brass (Trumpet, Winds (Clarinet, (Quartet, Violirf
Cello) Horn) Flute, Oboe) Viola)
Average F-
Measure (Pitch- 92.7% 82.6% 87.6% 93.2% 88.4% 87.0%
based)
Average F-
Measure (Energy- 97.7% 91.0% 83.6% 87.8% 80.8% 44.1%
based)
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Figure 9 Precision comparison of energy-based and pitch-based onset detections.

42.9% and greatly improves the performance from 44.1% to 87.0%. In addition, the pitch-based algorithm
gains 5.4%, 7.6% for brass and winds, respectively.

A comparison between the precisions of the pitch-based and energy-based methods is shown in Fig. 9.
The comparison clearly suggests that the pitch-based method has a much better precision than the energy-
based method.

The pitch-based method overperforms the energy-based algorithm for the detection of soft onsets. The
reason for improved performance can be explained as follows. Energy-based approaches are based on the
assumption that there are relatively more salient energy changes at the onset times than in the steady-state
parts. In case of soft onsets, the assumption can not stand. The significant energy changes in the steady-
state parts can mislead energy-based approaches and cause many false positives. Conversely, the
proposed pitch-based algorithm can first utilize stable pitch cues to separate the music signal into the
transients and the steady-state parts, and then find note onsets only in the transients. The pitch-based
algorithm reduces the false positives that are caused by the salient energy changes in the steady-state
parts, and greatly improves the onset detection performance of the music signal with many soft onsets.
Because of the reduction of false positives, it also gets a better precision.

Similar to pitch-based onset detection, phase-based method has a good performance for the detection of
soft onsets. But phase-based detection is very susceptible to phase distortion and to phase noise
introduced by the phases of low energy components. Compared to pitch-based detection, phase-based
detection shows very low performance for the onset detection in real polyphonic music signal.
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Music Information Retrieval Evaluation Exchange (MIREX) provides a formal evaluation framework
(MIREX, 2005). From MIREX 2005 to MIREX 2007, several onset detection methods have been
evaluated on the same dataset in the audio onset detection task. The test dataset contains 85 music
sequences of different genres and instruments. In total there are 14-minutes of time duration. The dataset
contains four different classes such as solo drum, solo polyphonic pitched instruments, solo monophonic
pitched instruments and complex mixtures. In addition, the monophonic pitched instruments class is
subdivided into 5 different subclasses: brass, wind, sustained strings, plucked strings, bars and bells,
singing voice.

In the MIREX 2005~2007 onset detection tasks, many methods have been evaluated. Almost all the
methods fail to detect onsets in singing voice. This result suggests that it is quite difficult to develop a
general onset detection method, which can work well for both singing voice and the other music. Most of
the submitted methods are energy-based and show a poor performance on the detection of the classes:
solo brass, solo wind, solo sustained string. These classes usually contain a large number of soft onsets.
The significant energy changes in the steady-state parts can mislead energy-based approaches and cause
many false positives. As explained before, the pitch-based detection can clearly outperform the energy-
based detection for the detection of soft onsets. In addition, the phase information is also useful to
improve the detection for soft onsets. The Zhou and Reiss method combines the energy-based and pitch-
based detection so that the method has much better performance on the solo brass class and solo wind
class than other methods (Zhou and Reiss, 2007). The Lee method combines energy and phase
information and achieves the best performance on the sustained string class (Lee, Shiu and Kuo, 2007).
According to the average F-measure, the overall performance difference between the first four best
methods [Zhou and Reiss, 81%; Lee 80%; Lacoste and Eck, 80%; Robel, 80%] is minor (Zhou and Reiss,
2007; Lee, Shiu and Kuo, 2007; Lacoste & Eck, 2005; Robel, 2007).

FUTURE RESEARCH DIRECTIONS

Since the nature of music signals is quite varied, no single method is suitable for all music signals.
different detection methods could be used for different types of sound events to achieve better
performances (Collins, 2005b; Ricards, 2005). Inspired by the human perceptual system, further
improvements may arise by combining multiple simpler methods using a voting mechanism. These
improvements could be achieved by developing more efficient classification algorithms capable of
assisting music onset detection. The classification algorithms would automatically estimate the dominant
onset type for the music signal being analyzed. Then, the adaptive combination of different methods is
expected to improve the overall performance. In addition, as the human ear performs much better for
onset detection than an automatic detection method, computational auditory models such as a loudness
model could also play an important role in the further research.
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